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The Burgers’ model of compressible fluid dynamics in one dimension is extended to include the effects of
pressure back-reaction. The system consists of two coupled equations: Burgers’ equation with a pressure
gradient !essentially the one-dimensional Navier-Stokes equation" and an advection-diffusion equation for the
pressure field. It presents a minimal model of both adiabatic gas dynamics and compressible magnetohydro-
dynamics. From the magnetic perspective, it is the simplest possible system which allows for ‘‘Alfvenization,’’
i.e., energy transfer between the fluid and magnetic field excitations. For the special case of equal fluid
viscosity and !magnetic" diffusivity, the system is completely integrable, reducing to two decoupled Burgers’
equations in the characteristic variables v!vsound (v!vAlfven). For arbitrary diffusivities, renormalized per-
turbation theory is used to calculate the effective transport coefficients for forced ‘‘Burgerlence.’’ It is shown
that energy equidissipation, not equipartition, is fundamental to the turbulent state. Both energy and dissipation
are localized to shocklike structures, in which wave steepening is inhibited by small-scale forcing and by
pressure back reaction. The spectral forms predicted by theory are confirmed by numerical simulations.

PACS number!s": 47.27."i, 52.35.Ra, 41.20.Jb

I. INTRODUCTION

The challenge of understanding the puzzling phenomena
generically dubbed ‘‘intermittency’’ has secured the status of
turbulence as one of the premiere unsolved problem in clas-
sical physics. Intermittency phenomena complicate the
simple and elegant picture of turbulence dynamics originally
painted by Kol’mogorov. This model, which is a type of
mean-field theory, is based upon assumptions of homogene-
ity, scale similarity, and unconstrained statistics governing
the interaction between different degrees of freedom. Inter-
mittency phenomena, however, emphasize the nontrivial
structure of higher order !than quadratic" correlations by dis-
torting the shape of the fluctuation probability distribution
function !PDF", modifying spectra and introducing complex
coherent effects into flow visualizations. Indeed, mounting
evidence from numerous numerical and laboratory experi-
ments suggest that spatiotemporally coherent structures are
the cause of intermittency phenomena in turbulent flows.
Such structures impose precisely the sorts of constraint on
the phase dynamics of nonlinear interaction which is !arbi-
trarily" ignored in the Kol’mogorov paradigm. Thus the
problem of understanding the formation and dynamics of
structures in turbulence is a very popular research topic in
nonlinear and statistical dynamics. A major obstacle to
progress in this field is the resistance of the governing non-
linear PDE’s to revealing nonperturbative solutions !even for
simplied, limiting cases", from which insight into coherent
structure properties and dynamics may be extracted. Hence,
the recent flurry of studies of the Burgers’ equation model of
one-dimensional !compressible" turbulence is not at all sur-
prising, since explicit, closed form solutions !resembling
shock waves" to the unforced Burgers’ equation have long
been available. The more complicated case of stochastically
forced ‘‘Burgerlence’’ is readily amenable to analysis by
scaling and renormalization group methods. Of course, one-
dimensional !1D" forced Burgerlence is also an attractive

model for high-resolution numerical simulations. Thus, in
spite of its oversimplicity and unphysical assumptions, Burg-
erlence retains its prominent position in turbulence models
by virtue of its suitability as a ‘‘laboratory animal’’ for con-
trolled experimentation in the application of theoretical
methods to the description of turbulent flows.
In traditional Burgers’ models, density or pressure

changes result solely from changes in the velocity, much like
the advection of a passive scalar. However, the evolution of
these pressure terms suggest that they may grow enough to
become dynamically significant. Indeed, the formation of
shock waves and pancakelike density structures forces con-
sideration of pressure back reactions on the fluid. Alterna-
tively, the inclusion of pressure forces may be necessary
from the very beginning, as in modeling pressure-induced
flow or the basic magnetohydrodynamics !MHD" equations.
These considerations motivated us to extend the simple

Burgers’ model of turbulence to include the effects of an
active pressure gradient. The pressure source, in turn, is
coupled with the fluid through a convection-diffusion equa-
tion !e.g., adiabatic gas pressure and the continuity equation
for density". For simplicity, we will consider the specific !yet
representative" case of 1D compressible MHD, previously
referred to as MHD Burgerlence #1$. While references to the
other model systems will be given, where appropriate, the
relative lack of attention given to MHD turbulence !com-
pared with its neutral fluid counterpart" suggests that the
most insightful interpretations may be in this field.
In this paper we present and analyze a 1D model of com-

pressible, resistive MHD turbulence. In parallel, we interpret
the model as a gas-dynamical system, with the magnetic field
replaced by a gas density under the influence of an adiabatic
pressure. We give an exact, closed form solution to the un-
forced system in the case of unity !magnetic" Prandtl number
%#& . The solution represents shock waves in the character-
istic variables of the dissipationless system. The scale invari-
ance of inertial range Burgerlence is exploited to derive
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coupled renormalization group !RG" recursion equations for
the turbulenct viscosity (% t) and diffusivity (& t) in the infra-
red limit, to one-loop order. This task is dramatically simpli-
fied by the observation that Galilean invariance precludes
renormalization of the interaction coupling coefficients, as
well as the purely advective coupling. For white-noise forc-
ing, there is no amplitude !wave function" renormalization,
leading to RG recursion equations for % t and & t which
closely resemble those for a !nonlinear" dynamical system in
a 2D phase space. Of the three fixed points obtained, the one
physical solution corresponds to a state of equidissipation
!i.e., % t#& t; not equipartition, where 'ṽ2(#'B̃2(), indepen-
dent of the noise strengths for ṽ and B̃!. !This conclusion
still holds for spatially dependent noise." The basin of attrac-
tion of the equidissipation fixed point encompasses all
% t,& t$0. The RG exponents are determined by simple scal-
ing relations and Galilean invariance constraints in the infra-
red limit. The scaling exponents and fixed point relations are
then used to calculate % t and & t, and thus 'ṽ2(k)( and
'B̃2(k)(, explicitly. As in the case of hydrodynamic Burger-
lence, the forcing on small scales present in the white-noise
spectra is strong enough to inhibit shock formation, i.e., the
kinetic and compressional !magnetic" energy spectra scale as
E(k))k"1, not k"2. For spatially dependent noise, the
amount of suppression depends on the correlation length of
the forcing.
The remainder of this paper is organized as follows. In

Sec. II, we present and discuss the pressure-coupled Burgers’
model. Various properties of the model are elucidated. In
Sec. III, we discuss dynamical aspects of the model. The
unforced system is solved exactly for the case %#& . More
general transport conditions !i.e., %*&) are discussed, and
the forced model is introduced as a paradigm for more com-
plicated turbulence systems. Next, the infrared statistical dy-
namics of forced MHD Burgerlence are analyzed using the
direct-interaction approximation and RG methods for the
case of uncorrelated white-noise sources !the extension to
spatially dependent noise is treated in appendixes". Scaling
arguments are used to determine the dynamical exponents.
The one-loop RG recursion equations are used to obtain the
physically relevant fixed point and its basin of attraction.
Section IV contains a summary and discussion of results.
Particular emphasis is given to the turbulent transport coef-
ficients and the subsequent energy spectra. The implications
of these results for other paradigms of MHD turbulence are
discussed.

II. MODEL

Burgers’ equation is the simplest nonlinear generalization
of the diffusion equation. As a result, it appears as a first
approximation in a variety of fields, including polymer mo-
tions #2$, the growth of interfaces #3$, and driven diffusion
#4$. Burgers originally formulated the equation as a model of
compressible fluid motion in one dimension #5$, writing

Dv
Dt #

+v
+t %v

+v
+x #%

+2v
+x2 , !1"

where % is the kinematic viscosity. It is the Navier-Stokes
equation in one dimension, without the pressure gradient.

The dynamics described by Eq. !1" are straightforward: con-
vection steepens waves until they are balanced by viscosity
!Fig. 1". Thus Burgers’ equation captures the essential phys-
ics of shock formation #5$ and frontogenesis #6,7$. It has also
been used to model the 1D clumping of matter in an expand-
ing universe !through the equation of continuity" #8,9$.
In traditional models of Burgers’ turbulence, density or

pressure changes result solely from changes in the velocity,
much like the advection of a passive scalar. However, the
evolution of the neglected pressure term suggests that it may
grow enough to become dynamically significant. Indeed, the
formation of shock waves and pancakelike density structures
forces consideration of pressure back reactions on the fluid.
Alternatively, the inclusion of pressure forces may be neces-
sary from the very beginning, as in modeling pressure-
induced flow or the basic MHD equations. In the fluid case,
the reintroduction of a pressure gradient effectively recovers
the 1D Navier-Stokes equation. For the magnetic case, the
inclusion of magnetic pressure creates a simplified model of
the MHD equations. We will concentrate on the MHD sys-
tem, and refer to the other models at the end. To simplify the
physics, the derivations will be given for the force-free !i.e.,
decay" case. The addition of random forcing terms will be
considered in later sections.
To begin, then, consider a fluid free to move in one direc-

tion !the x̂ direction, say" with a perpendicular magnetic field
( ẑ direction" permeating it. The fluid behavior is described
by the equations of continuity and momentum:

+,

+t %
+!,v "

+x #0, !2"

+v
+t %v

+v
+x #"

1
,

+

+x !P!,"%" B28- # $%%
+2v
+x2 . !3"

Here, an equation of state P#P(,) has been implicitly as-
sumed. The magnetic field evolves according to the diffusion
equation

+B̂
+t #.! &!v! &B! "%&.2B! , !4"

which in one dimension reduces to

+B
+t #"

+!vB "

+x %&
+2B
+x2 . !5"

FIG. 1. Wave steepening in Burgers’ equation. The initial sine
wave on the left evolves to the steady-state sawtooth shock on the
right.
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In these equations, &#c2/4-/ is the magnetic diffusivity,
and / is the electrical conductivity of the fluid.
While Eqs. !2", !3", and !5" completely determine the sys-

tem !with an appropriate equation of state", they are still too
complicated for our purposes. To model the MHD behavior
explicitly, assume that the fluid density changes on a length
scale which is much longer than that of the magnetic field,
i.e., B"1+xB',"1+x, . In a perturbation expansion ,#,0
%,1(x)%¯ , only the lowest-order !constant" term would
contribute. Alternatively, pressure balance could link density
and magnetic fluctuations in a weakly compressible fluid, as
in some parts of the solar wind plasma #10,11$. In this pic-
ture, Alfvenic properties are determined by magnetic varia-
tions on a constant density background. With this simplifica-
tion, the model equations become

+v
+t %v

+v
+x %B

+B
+x #%

+2v
+x2 , !6"

+B
+t %

+

+x !vB "#&
+2B
+x2 , !7"

where B has been normalized to represent the instantaneous
Alfven velocity B/!4-,0. Despite the approximations, Eqs.
!6" and !7" still conserve energy !up to dissipation effects".
Indeed, some straightforward manipulations give

+

+t % 1
2 !v2%B2"dx#"% !%" +v

+x # 2%&" +B
+x # 2$dx , !8"

proving the assertion. The MHD Burgers model is thus the
simplest possible set of equations which allow ‘‘Alfveniza-
tion,’’ i.e., the exchange of magnetic and fluid energies. The
inclusion of compressional effects of the fluid density only
complicates this basic picture, justifying a posteriori its ne-
glect. The system represents a meaningful, if limited, model.
Equations !6" and !7" may also model the opposite limit

of a fluid-dominated !i.e., unmagnetized" system. In this
case, we allow arbitrary density variations and assume an
adiabatic equation of state: P#A,0. Here A is a constant
and 0#Cp /Cv is the ratio of specific heats. Note that the
Burgers’ gas is certainly not adiabatic in the shock regions,
but it is a reasonable approximation for the interstitial pres-
sure. Since 0 is also given by (2%1)/1 , where 1 is the
number of dimensions, Eq. !7" now describes the gas mo-
mentum, where B#!3A, is the local sound speed. Equation
!6" is the continuity equation for the rescaled density with
the addition of a diffusion term !consistent with a density-
dependent gas pressure". Hence the MHD Burgers system
has a broader applicability, and the transformations between
these disparate models will prove useful in the analysis
which follows.
The gas-dynamic viewpoint often provides insightful in-

terpretations into the analogous MHD system. For example,
the association between the gas density and the magnetic
field highlights the latter’s role as a compressive restoration
force for the propagation of Alfven waves. Similarly, the
global conservation !up to dissipation" of fluid momentum
2(vB)dx corresponds to the conservation of magnetic flux.
In the limit of negligible pressure back reaction, this conser-
vation forces B to grow at shocks ( v́(0) and damp else-

where. Recalling that the Burgers’ system is energetically
dominated by the shock regions, one sees that magnetic field
amplification !there is no dynamo effect in one dimension" is
intrinsically intermittent.
Another obvious gas-dynamic identity is the Galilean in-

variance of Eqs. !6" and !7". However, it is instructive to
examine this symmetry in light of MHD and to review the
transformation of the magnetic field from a fluid perspective.
In our geometry, there is a magnetic field B! #Bẑ with an
induced electric field E! #Eŷ . Following a frame moving
with velocity v! #v x̂ , the magnetic field may be written as

DB
Dt #

+B
+t %v

+B
+x !9"

#
+B
+t %v " "

1
c

+E
dt # !10"

#
+

+t " B"
vE
c # . !11"

The partial derivative emphasizes that we are in a moving
frame, prompting the definition of the transformed field B!
#B"vE/c . Two comments are in order: !1" taking +B!/+t
#(+B!/+t!)/(+t!/+t) gives the full relativistic transforma-
tion; and !2" vE/c)(v/c)2B , so B!#B !i.e., Galilean in-
variance" to first order in v/c . Since MHD neglects the dis-
placement current, both the magnetic and velocity fields are
explicitly nonrelativistic. It is easily seen that the transforma-
tions v!(x!,t)#v(x"ut ,t)%u , B!(x!,t)#B(x"ut ,t) leave
Eqs. !6" and !7" invariant.
This symmetry is physically apparent in ideal MHD. Ne-

glecting the viscous and forcing terms, the magnetic field is
‘‘frozen’’ into the fluid #12$ #immediately evident by inter-
preting Eq. !6" as the continuity equation for ,$. The Gal-
ilean invariance of the fluid then implies the invariance of
the B field. However, the invariance argument does not de-
pend on any spatial derivatives. Only the time derivative is
needed to cancel the extra nonlinear term. Indeed, this can-
cellation highlights its relevance: Galilean invariance implies
that the nonlinear coupling strength is unaffected !i.e. un-
renormalized" by the following perturbative treatments #13$.
It is useful to note that this symmetry applies in general to
compressible, viscous MHD !in any number of dimensions".

III. DYNAMICS OF MHD BURGERLENCE

A. Unforced case

Since Eqs. !6" and !7" are generalizations of Burgers’
equation, it is reasonable to wonder if the Burgers’ shock
dynamics are contained in the new system. Intuitively, we
expect wave steepening to occur until it is balanced by pres-
sure back reaction. A visualization of this dynamical evolu-
tion is shown in Fig. 2. Comparison with the N-wave struc-
ture of the original Burger’s model !see Fig. 1" shows that
shock formation is inhibited.
As a first step in the analytical characterization, suppose

that the collisional transport rates of the two fields are equal;
i.e., the !magnetic" Prandtl number Pr3%/D#1. In terms of
the characteristic, or Elsasser, variables z!#v!B the sys-
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tem reduces to two decoupled Burgers’ equations:

+z!

+t %z!

+z!

+x #%
+2z!

+x2 . !12"

This reduction is not surprising, since in dissipationless
MHD Burgerlence, initial value data is propagated along the
characteristics dx/dt#v!B at the constant characteristic
velocity v!B . !In the gas-dynamic analogy, these variables
just represent the combination of fluid and thermal speeds."
All the familiar results from Burgers’ equation may be ap-
plied to this special case. In particular, the system can sup-
port Alfvenized shock waves, with regions of ź!(0 steep-
ening into fronts and ź!$0 regions smoothing. This
characteristic behavior implies that the MHD dynamics are
controlled by the fluid velocity. Indeed, flux conservation
requires magnetic concentration at the velocity shock fronts,
while pressure back reaction acts to limit wave steepening.
However, the relation + t(Bx)4"2(vxBx) implies that both
negative and positive magnetic shocks are possible. Since
these shocks dominate the energy spectrum of the system
#14$, magnetic intensity in MHD Burgerlence is intrinsically
intermittent.
To examine the case %*D , it is useful to make the simi-

larity transformations

v!x ,t "#" %

t # 1/2 f " x
!%t # , B!x ,t "#"Dt # 1/2g" x

!%t #
!13"

so that Eqs. !6" and !7" become

" 1
2 f" 1

2 5 f !% f f !#gg!%P f ", !14"

" 1
2 g" 1

2 5g!%! f g "!#Pg", !15"

where P#Pr"1#D/% and the prime refers to differentiation
with respect to 53x/!%t . Integrating once gives

"5 f% f 2#"Pg2%2P f !, !16"

"5g%2 f g#2Pg!. !17"

Now we can solve Eq. !17" for f, substitute into Eq. !16", and
write g(5)#h(5)"2/P to obtain the single equation

4h"%Ph1"4/P#" 1%
52

4 # h . !18"

Equations of this type were studied by Thomas #15$ and
Herbst #16$, who showed that the solvability condition is P
#1. The solution, first given by Pinney #17$, corresponds to
the equal transport case discussed above.
The more general case of %*D is not integrable, suggest-

ing a more interesting interplay between the fluid and the
pressure field. In particular, it raises the following question:
how will arbitrary transport rates affect energy distribution
and structure development?

B. Transport issues in steady-state Burgerlence

In contrast to the strictly local interactions of the
Kol’mogorov paradigm for neutral fluids, interactions be-
tween disparate scales are fundamental to the dynamics of
even the simplest incarnations of MHD turbulence. For ex-
ample, the nonlocal interaction between a large-scale mag-
netic field and small-scale fluid motions !commonly referred
to as the Alfven effect" inhibits and reduces eddy-eddy inter-
action and cascading. Thus in MHD turbulence the familiar
Kol’mogorov inertial range spectrum E(k)#62/3k"5/3 is re-
placed by the Kraichnan-Iroshnikov (KI) spectrum E(k)
#(6 ṽA)1/2k"3/2, where ṽA

2#'B̃2(/4-,0 . Indeed, the promi-
nent footprint that large-scale magnetic patterns leave upon
the inertial range physics of MHD turbulence, even in the
context of mean field (i.e., KI) theory, suggests that intermit-
tency effects (induced by large-scale structures) will be at
least as strong in MHD as in neutral fluid turbulence. This
suspicion is reinforced by consideration of the well-known
reciprocal mechanisms whereby small-scale turbulence can
induce and pump large-scale self-organization in MHD. The
turbulent magnetic dynamo, which realizes the process of
inverse transfer of magnetic helicity, is the classic example
of such a mechanism. Asymmetries in the underlying turbu-
lence are responsible for producing order on large scales. For
example, a dynamo in 3D incompressible MHD occurs only
if reflection symmetry of the turbulence is broken. Thus the
dual reciprocal processes, whereby large-scale structures
modulate MHD turbulence via the Alfven effect and
whereby broken symmetry in the turbulence drives large-
scale self-organization, together suggest self-reinforcing
feedback in the dynamics of intermittency phenomena in
MHD turbulence. The above discussion naturally concen-
trates the theorist’s mind on several questions about the fun-
damental dynamics of intermittent pressure-dominated turbu-
lence, which include !but are not limited to" the following.

!1" How much of the inertial range is affected by the
direct interaction of disparate scales !e.g.,‘‘Alfvenization’’ in
MHD"? Does equipartition occur between kinetic and com-
pressional energies, and where? How does the energy distri-
bution of the system vary with forcing? What roles do fluid
and field really play in energy transfer and cascading, and in
self-organization processes !i.e., dynamos"?

!2" Can the numerous‘‘conceptual designs’’ for structures
in fluid and MHD turbulence, which abound in the literature

FIG. 2. Wave steepening in the MHD Burgers’ model. The sys-
tem evolves over the same period as for Fig. 1.
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!e.g., flux tubes, fluid and magnetic vortices, etc." be ex-
tracted from the governing nonlinear and dissipative PDE’s
Can useful closed form solutions which capture the physics
of these concepts be found? How do these structures impact
Alfvenization?
To explore these issues, we will introduce random noise

sources to generate and sustain a turbulent steady-state. In
the magnetic interpretation, the model equations become

+v
+t %v

+v
+x %B

+B
+x #%

+2v
+x2 % f̃ v , !19"

+B
+t %

+

+x !vB "#D
+2B
+x2 % f̃ B . !20"

The presence of forcing highlights several dynamic regimes,
depending on whether both fields, or just one, are randomly
driven.

!1" f̃ v*0, f̃ B#0: the fluid is actively stirred while B is
advected. For low magnetic fields, pressure backreaction is
negligible, and the system reduces to Burgers’ advection of a
passive scalar.

!2" f̃ v#0, f̃ B*0: the magnetic field has an active source,
and the fluid responds to the induced pressure. Obviously
this is a B2 !i.e., higher-order" effect.

!3" f̃ v*0, f̃ B*0: dual-drive turbulence.
The ‘‘typical’’ turbulence approach is case !1", where

fluid forcing at large scales produces a Kol’mogorov-type
energy cascade. In Burgers’ turbulence, small-scale distur-
bances directly affect large-scale structures !through shocks",
so forcing at all scales is the standard statistical tool. Hence
we will treat the more general case of dual forcing first,
discussing the other cases when appropriate.

C. Forced case

While the decay problem gives insight into the energy
transfer between the fluid and the pressure field, it cannot
model the transport properties of sustained !i.e., stationary"
homogeneous turbulence. To treat this case, we introduced
random forcing functions into the coupled Burgers’ system.
With these noise sources, the !magnetic" model is governed
by

+v
+t %7vv

+v
+x %7BB

+B
+x #%

+2v
+x2 % f̃ v , !21"

+B
+t %7B

+

+x !vB "#D
+2B
+x2 % f̃ B . !22"

Here, 7v and 7B are bookkeeping parameters which will
eventually be set to unity. Their labeling is the most general
one consistent with the conservation of energy.
While the random fluid forcing f̃ v is introduced mainly as

a turbulent energy source, f̃ B has a variety of possible physi-
cal meanings. From a fluid perspective, f̃ B represents seed
pressure or temperature variations !as functions of the den-
sity", or the random ionization and dissociation and recom-
bination of particles in a concentrated solution. From a cos-
mological perspective, f̃ B models spontaneous density

fluctuations, which are necessary for initial matter clumping.
In the MHD interpretation, f̃ B models random seeding of a
perpendicular magnetic field, or fluctuations of an ambient
force-free one.
Superficially, the presence of random forcing controls the

dynamics of the system. However, this extended Burgers’
model is a coupled system of two nonlinearly interacting
fields, and the dynamical response to even simple sources is
not a priori obvious. Indeed, these nonlinear interactions can
induce non-Gaussian distributions, even for Gaussian noise.
Physically, deviations from normality !i.e., intermittency ef-
fects" result from the development of shocks or other large-
scale coherent structures. A flat initial spectrum allows these
effects to be seen more clearly. To simplify the analysis,
then, let us first assume that f̃ v and f̃ B are random white-
noise forcing functions with no cross-correlations, i.e.,

' f̃ i!k ,8" f̃ j!k!,8!"(#Si1 i j1!k"k!"1!8"8!", !23"

where i , j"9v ,B:. Note that the forcing is now distributed
equally on all spatial scales. !The extension to spatially-
dependent noise is treated in Appendix B." An example of
the forced dynamics is shown in Fig. 3.
For convenience, we will call the range of dynamic re-

sponse the inertial range. Technically, though, we are con-
sidering a regime of driven turbulence, rather than a proper
‘‘inertial’’ range !i.e., a momentum-dominated response to
purely large-scale forcing". The only difference is the band-
width of the noise sources, but the corresponding interpreta-
tions differ significantly. A reconciliation between these two
viewpoints will follow the analysis, where the results will
allow a basis for comparison.

1. Scaling arguments

We are interested in fully developed MHD Burgerlence
for long times and large distances. For homogeneous turbu-
lence in the inertial range, there are no intrinsic scale lengths.
Dynamical terms will dominate beyond the dissipative
lengths, and correlation functions will asymptotically ap-
proach simple algebraic forms #18,19$. For example, the ve-
locity autocorrelation '1v2(1x ,t)( will have the homoge-
neous form (1x)";'1v2(t/1xa)(. Alternatively, 8<ka
provides a nonlinear dispersion relation for the system #20$.
To see the dependence of the various parameters on the

scale size, suppose that we change the length scale x→bx .
Under this similarity transformation, the other variables will
scale, in general, as t→bat , v→bcv , and B→bdB . After
this rescaling, Eqs. !21" and !22" become

+v
+t %7vba%c"1v

+v
+x %7Bba"c%2d"1B

+B
+x

#%ba"2 +2v
+x2 %ba"c f̃ v , !24"

+B
+t %7Bba%c"1 +!vB "

+x #Dba"2 +2v
+x2 %ba"d f̃ B , !25"

Consistent scaling of 7B implies that c#d . Therefore, v and
B scale the same way !necessary for the local conservation of
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energy". The assumption of white noise implies that ' f̃ 2(
#2 f̃ 2dk d8 is invariant to a change in scale. Hence, a
#2c%1; there is only one independent exponent to find.
Choosing a as the necessary exponent, the parameters

!i.e., coefficients" of Eqs. !24" and !25" now scale as

& 7v
7B

'→b3!a"1 "/2& 7v
7B

' , & %
D'→ba"2& %

D' . !26"

Finding a is equivalent to finding the transport behavior of
the system. This is immediately apparent from the relation
xa)t . For example, a#2 signifies diffusion, as in the simi-
larity transformation used in Eqs. !13". That diffusive as-
sumption was motivated by the Hopf-Cole solution to the
unforced Burgers’ system. In the case here, the presence of
forcing dynamically alters the system response, modifying
the transport relationship.
It is critically important to note that random Galilean in-

variance implies that the coupling coefficient 7 is unaffected
by the the nonlinear interactions !i.e., no vertex corrections"
#13$. This is seen most easily from Burgers’ equation !12",
with z! acting as velocity. In a moving reference frame,
z!(x ,t)→z!(x"7zz!t ,t). Note that the coupling coeffi-
cient is necessary in the velocity boost, since the first-order
correction !i.e., symmetry generator" is nonlinear. Galilean
invariance and scale invariance can be preserved only if 7z is
unrenormalized. By the arguments in Sec. III B, this condi-
tion also holds for both 7v and 7B . This constraint immedi-
ately gives the scaling exponents a#1 and c#0. That is, x
)t , so transport is ballistic rather than diffusive. The speed
of propagation, though, can only be determined through ap-
proximation methods.

2. Direct-interaction approximation

The direct-interaction approximation treats the nonlin-
earites of Eqs. !21" and !22" as perturbations. The scaling
behavior is then determined by spatially averaging over the
interacting modes. To this end, we Fourier transform the
system in space and time, giving

!"i8%%k2"vk ,8#"7v( v
+v
+x ) k ,8"7B( B +B

+x ) k ,8% f̃ v ,

!27"

!"i8%Dk2"Bk ,8#"7B( +

+x !vB ")
k ,8

% f̃ B , !28"

where the angular brackets '¯(k ,8 represent a convolution.
These equations may be solved perturbatively by an expan-
sion in the nonlinear interaction strengths 7v)7B :

vk ,8#vk ,8
!0 " %7vvk ,8

!1 " %7v
2vk ,8

!2 " %¯ ,
!29"

Bk ,8#Bk ,8
!0 " %7BBk ,8

!1 " %7B
2Bk ,8

!2 " %¯ .

The linear behavior is a simple diffusive response to the
forcing, where the bare !unrenormalized" propagators are de-
fined by Gv

03("i8%%k2)"1 and GB
03("i8%Dk2)"1.

Note the implicit assumption that convection is dominated
by forcing. The nonlinear effects appear as first-order correc-
tions:

vk ,8
!1 " #"ikG0

v!k ,8" =
k!,8!

#7vvk!,8!
!0 " vk"k!,8"8!

!0 "

%7BBk!,8!
!0 " Bk"k!,8"8!

!0 " $ , !30"

Bk ,8
!1 " #"ik7BG0

B!k ,8" =
k!,8!

#vk!,8!
!0 " Bk"k!,8"8!

!0 "

%Bk!,8!
!0 " vk"k!,8"8!

!0 " $ . !31"

These terms appear recursively in the second-order perturba-
tions

!"i8%%k2"vk ,8
!2 " #"ik =

k!,8!
#7vv"k!,"8!

!0 " vk%k!,8%8!
!1 "

%7BB"k!,"8!
!0 " Bk%k!,8%8!

!1 " $ , !32"

!"i8%Dk2"Bk ,8
!2 " #"ik7B =

k!,8!
#v"k!,"8!

!0 " Bk%k!,8%8!
!1 "

%B"k!,"8!
!0 " vk%k!,8%8!

!1 " $ . !33"

Equations !32" and !33" define renormalized propagators,
or !equivalently" effective transport coefficients. In the hy-
drodynamic limit (k ,8→0), these coefficients become

% t#
1
4-2 % dk!d8!#7v

2G0
v!k!,8!"*vk!,8!

!0 " *2

%7B
2G0

B!k!,8!"*Bk!,8!
!0 " *2$ , !34"

Dt#
7B
2

8-2 % dk!d8!#G0
B!k!,8!"*vk!,8!

!0 " *2

%G0
v!k!,8!"*Bk!,8!

!0 " *2$ , !35"

using the continuum approximation >k!,8!
→2#dk!d8!/(2-)2$ . Integrating over 8! gives

% t#
1
4- !7vSv

%2
%

7BSB
D2 $ %

kmin

? dk!
k!4

, !36"

Dt#
7B
2

2-!D%%" !Sv

%
%
SB
D $ %

kmin

? dk!
k!4

. !37"

Here Sv and SB are the !white" noise strengths of the forcing
functions #see Eq. !23"$. Note that the interaction of slow
modes causes the transport coefficients to diverge. Finally,
performing the spatial average gives

% t#
1

12-kmin
3 !7vSv

%2
%

7BSB
D2 $ , !38"

Dt#
1

6-kmin
3 ! " 7B

2

%%D # " Sv

%
%
SB
D # $ . !39"
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Since we are in the inertial range, these turbulent diffu-
sivities will dominate the original bare ones. Letting %→% t

and D→Dt, Eqs. !38" and !39" become self-consistent recur-
sion relations for the effective viscosity and diffusivity. Car-
rying out the algebra, one finds that

Dt#% t! 7v
2SvSB";SB!% t"3

;!2Sv"SB"!% t"3"7v
2Sv
2$ , !40"

where ;#6-kmin
3 . Using this relationship, the turbulent dif-

fusivity is determined by the equation

x3"
b
2 #5dc"!2c"1 "2$x2%abc#2!c%d ""1$x

"
a2bc
2 !c%d "#0, !41"

where x#;(% t)3, a#7v
2Sv , b#7B

2SB , c#Sv /SB , and d
#7v

2/7B
2 . This equation is the stationarity condition for

MHD Burgerlence.
In terms of the dimensionless interaction parameters

U1#
7v
2Sv

6-kmin
3 !% t"3

and U2#
7B
2SB

6-kmin
3 !Dt"3

,

the fixed points of Eqs. !40" and !41" are !for d)1)

9U1 ,U2:a#& 1"!1"r ,1"
2
r !1%!1"r "' ,

9U1 ,U2:b#& 1%!1"r ,1"
2
r !1"!1"r "' , !42"

9U1 ,U2:c#& 2
1%r ,

2r
1%r' .

The ratio of noise strengths r3SB /Sv is the only indepen-
dent parameter. Note that 0@r@? . In particular, r may be
greater than 1, implying that the first two solutions may give
complex diffusivities. Imaginary components to the transport
coefficients suggest the propagation of Alfven waves. The
third of Eqs. !42" gives strictly dissipative behavior. Since all
three solutions are theoretically possible, the question be-
comes one of physical accessibility. In other words, given a
set of meaningful initial conditions, which asymptotic fixed
point will the system approach?
As described above, the hydrodynamic behavior is domi-

nated by the nonlinear terms. These interacting modes were
treated mathematically by averaging over spatial scales. A
detailed analysis of the scaling behavior, then, will give in-
sight into the asymptotic transport properties of the MHD
system. This analysis is provided by the dynamical renormal-
ization group.

3. Renormalization group theory

An alternative method for calculating the scaling expo-
nents is the dynamical renormalization group !RNG". This
approach uses the same perturbation series as done previ-
ously, but treats the interacting modes differently. Instead of
integrating Eqs. !36" and !37" directly, the series is summed

successively over small ranges of momenta. This allows dif-
ferential recursion relations to be derived for the response of
the transport coefficients under a scale transformation. The
resulting equations give detailed phase flow information on
the turbulent diffusivities.
The RNG technique is applied in three steps. First, the

series is averaged over an incremental range in momenta.
The integrations in Eqs. !36" and !37" are performed over the
range kmine"1l4kmin(1"1l)@k@kmin where 1l is infinitesi-
mal. To first order !one loop" in the perturbation expansion,
the effective transport coefficients are given by

%(#%%
1
4- !7vSv

%2
%

7BSB
D2 $ %

kmin!1"1l "

kmin dk!
k!4

+%

%
1
4- !7v

2Sv

%2
%

7B
2SB
D2 $ " 1l

kmin
3 # , !43"

D(#D%
7B
2

2-!%%D " !Sv

%
%
SB
D $ %

kmin!1"1l "

kmin dk!
k!4

+D

%
7B
2

2-!%%D " !Sv

%
%
SB
D $ " 1l

kmin
1l # , !44"

where the superscript t has been replaced by ( to emphasize
the averaging over the shell of momenta.
These equations now have an effective cutoff kmine"1l.

The second step returns the system to its original spacing by
rescaling the momenta as k→ke"1l. This is the same scaling
done in Sec. III C 1, with b#e1l. Using the previous results,
the renormalized coefficients are related to %( and D( by

% renorm#%%
d%

dl 1l#%(#1%1l!a"2 "$ , !45"

D renorm#D%
dD
dl 1l#D(#1%1l!a"2 "$ , !46"

To first order in 1l , these equations give

d%

dl #%!a"2%
1

4-%kmin
3 " 7v

2Sv

%2
%

7B
2SB
D2 # $ , !47"

dD
dl #D!a"2%

1
2-Dkmin

3 " 7B
2

%%D # " Sv

%
%
SB
D # $ . !48"

There are also similar recursion relations for the coupling
coefficients 97v ,7B: and the noise strengths 9Sv ,SB:. Since
white noise is invariant to a change of scale, these strengths
remain unrenormalized !the more general case is treated in
Appendix B". It is shown in Appendix A that there are no
corrections to the coupling coefficients !vertices". This is due
to the intrinsic Galilean invariance of the original system. As
discussed above, this immediately implies the exponent a
#1.
The final step of the renormalization group requires that

the relevant parameters !i.e., % and D" remain fixed under the
scale transformation. This ensures that the rescaled equations
have the same form as the original ones. Setting Eqs. !47"
and !48" equal to zero, one sees that the nontrivial fixed
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points are given by Eqs. !38" and !39", except 9Sv ,SB:
→39Sv ,SB:. !This discrepancy arises from the different mo-
mentum ranges in the two approaches, and would disappear
after a full integration of the recursion relations." With simi-
larly adjusted interaction parameters, the possible branches
are given by Eqs. !42".
While the RNG methods give the same scaling behavior

as the DIA, as they should, they give more information. In
particular, the renormalization group gives the explicit evo-
lution of the transport coefficients under scale transforma-
tions. It therefore describes the approach to the fixed points
in the %-D phase space.
To analyze this behavior more closely, consider the recur-

sion relations !47" and !48" in terms of the interaction pa-
rameters U1#Sv /(2-kmin

3 %3) and U2#SB /(2-kmin
3 D3):

dU1

dl #3U1!1"
1
2 !U1%RU2"$ , !49"

dU2

dl #3U2!1"
1
R "U1%RU2

1%R # $ , !50"

where R3(rU1)/U2 and r#SB /Sv is the ratio of noise
strengths. The fixed points of these equations are given by
solutions !42". There are two ranges to consider: !1" r$1,
giving one real conjugate solution and two complex conju-
gate solutions; and !2" r@1, giving three real solutions.
Since the recursion relations !49" and !50" are both real, no
real initial parameters (U1 ,U2) can evolve to a complex
fixed point. In the first regime, then, the third of Eqs. !42" is
physically accessible. For r@1, there is one positive solution
and two negative ones for U2 . Figure 4 shows the first quad-
rant of a phase flow diagram for the representative value r
# 1

2 . The arrows indicate the flow under the renormalization
transformations !49" and !50". Note in particular that the
axes are repellors. Thus, for any physical starting point
(% ,D)$0, only the positive fixed point is accessible. Once
again, the third of Eqs. !42" is the infrared limit of the
system.

IV. RESULTS AND DISCUSSION

Using the third of Eqs. !42" as the only acceptable solu-
tion for the dimensionless interaction parameters, the turbu-
lent transport coefficients are

% t#!Sv%SB
12- $1/3kmin"1 , !51"

Dt#!Sv%SB
12- $1/3kmin"1 . !52"

The presence of an infrared divergence suggests an implicit
scale dependence as k"1)!(1x)2. Assuming that (1x)2
)Dt , this spatial dependence implies that the turbulent mo-
tions of the system create ballistic !rather than diffusive" mo-
tion, with the speed of propagation given by #(Sv
%SB)/12-$1/3.
The equality of the transport coefficients reflects a balance

between an enhanced fluid transport rate and an increased
!and thus more resistant" pressure. From the MHD perspec-
tive, the faster magnetic field convection is countered by an
enhanced magnetic diffusivity and stronger backreactions.
From the gas-dynamic viewpoint, the same nonlinear en-
hancement of the fluid transport !viscosity" increases the in-
terparticle pressure. In cosmological models, the turbulent
pressure !diffusivity" is countered by an enhanced particle
‘‘stickiness.’’ The asymptotic state selected is the one that
balances the two effects.
Physically, equidissipation results from the twofold action

of the nonlinearities: to create shocks through wave steepen-
ing and to enhance dissipation. Due to the N-wave structure
of the velocity shock !see Fig. 2", the dissipation is concen-
trated within the shock front. Since the only nonlinearity in
the induction equation is the vB Lorentz force, magnetic
concentrations are triggered by the velocity and localize at
the front as well. In this configuration, dissipation occurs
almost exclusively within the shock, while the interstitial re-
gions are essentially ideal. The resulting separation provides
two mechanical viewpoints for equidissipation:

!1" Using the shock height as a measure of its strength,
energy dissipation corresponds to a decrease in height. Heu-
ristically, the ‘‘end points’’ must approach each other. How-
ever, these end points are shared by the ideal region, where
the field is ‘‘frozen in’’ to the fluid. Hence, the transport
rates must be equal.

!2" A more satisfying view is derived from the equal
transport rates of magnetic and fluid energies in the ideal
region. Since plasma elements in this region flow into !and
out of" the shock, continuity of energy transport requires
equal transport coefficients across the shock boundaries.
Within the shock, energy transfer may occur, but the receiv-
ing field must accept energy at the donation rate of the other
field.
Thus the equidissipation state results from a dynamic con-

servation of energy. This is a distinctly separate condition
from the equipartition of energy. Indeed, a straightforward
calculation shows that

Ev!k "#*vk
!0 "*2#! 3-

2!Sv%SB"
$1/3Svk"1, !53"

FIG. 3. Velocity and magnetic field of forced MHD Burgerlence
as functions of position. The data are plotted on the half-period for
clarity.
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EB!k "#*Bk
!0 "*2#! 3-

2!Sv%SB"
$1/3SBk"1. !54"

While the vanishing of the magnetic energy with its
source is an acceptable limit, the corresponding velocity
limit presents an unphysical result for the fluid kinetic en-
ergy. Even as Sv→0, the presence of a mean-square mag-
netic pressure will cause a transfer of energy to the fluid. The
problem is an artifact of expansion !29", where the random
forcing was the source of the zero-order velocity field. Since
the magnetic pressure is a nonlinear first-order effect, its im-
pact on the fluid energy is not included in Eq. !53". The
relevant energy correction is a simple extension of the above
calculations, and is given by

Ev
1!k "#*vk

!1 "*2#!12-"1/3!32 !1"ln 2 "%
5-
)

$SB1/3k"1,

with a similar, but always subdominant, correction to the
magnetic energy. Equipartition of energy only occurs if Sv
#SB , i.e. the forcing strengths must be equal. !This distinc-
tion between equal dissipation and energy equipartition has
been observed in 3D simulations of incompressible MHD as
well #21$." Irrespective of this special case, both energy spec-
tra have the same spatial dependence, a direct result of the
conservation of energy. In the more general case of colored
noise, this scaling result will hold if the forcing functions
themselves have the same spatial dependence. Since the cal-
culations are somewhat more arduous !the noise must now
be renormalized as well", we relegate them to Appendix B.
The main result is that in an algebraic expansion of the forc-
ing, only spatial powers of the form S(k))k"2A will be
relevant in the hydrodynamic (k ,8→0) limit. For long-
range correlations, these singularities give corresponding en-
ergy spectra which scale as E(k))k"1"4A/3.
These results suggest that the noise sources determine the

energy distribution between the fields, while the k depen-
dence of the equidissipation rate controls the turbulent power
spectra. The spatial dependence of the effective diffusivities
results from the scale similarity of the imposed forcing.
Thus, the model of the turbulent steady state is self-
consistent and intuitively appealing. Numerical confirmation
of this picture is shown in Figs. 5 and 6. Saturation levels for
steady-state MHD Burgerlence are shown in Fig. 5. For the
ordinary !collisional" transport rates %#2& , the energy lev-
els determined by Sv#SB and Sv#2SB are compared. It is
clear that equal forcing gives energy equipartition. In addi-
tion, the large gap between the saturated energy and bare
dissipation indicates the dominance of the turbulent diffu-
sivities. These effective transport rates modify the spectral
decay imposed by the forcing. This is shown in Fig. 6 for the
cases Sv)SB)k0 and Sv)SB)k"1. Linear fits on the log-
log plots give the respective turbulent energy spectra as Bv
)k"1 and Bv)k"5/3, in agreement with the analytical pre-
dictions.
The explicit form of the energy spectrum represents a

competition between the spatial dependence of the forcing
and the system’s natural tendency to form shocks. This is
most clearly apparent for a white-noise source (S)k0),
where the presence of forcing at small scales inhibits shock

formation, changing the energy spectrum from k"2 to k"1.
Spatially dependent noise provides an extra parameter, the
decay exponent A, for greater modeling freedom. For ex-
ample, the noise profile S(k))k"1 recovers a Kolmogorov
spectrum !as found by Chekhlov and Yakhot for the forced
Burgers’ equation #22$", while S(k))k"3/8 generates a KI
spectrum. This latter reproduction is particularly interesting,
since the KI theory emphasizes the effects of a large-scale
field on small-scale energy transfer !the opposite limit con-
sidered here". Specifically, a large-scale magnetic field inhib-
its the cross-field transport of small fluid eddies. In our sys-
tem, fluid transport is inhibited by small-scale noise and by
pressure backreaction. It is the presence of long-range corre-
lations in the applied forcing which allows the model to dis-
play the more traditional, inertial-range theories.

V. CONCLUSIONS

We have presented an extension of the Burgers’ model of
1D fluid dynamics to include the effects of pressure. When
the pressure effects are magnetic, the system represents the
simplest possible model of compressible MHD which in-
cludes the effects of Alfvenization !the interchange of mag-
netic and fluid energies". In this case, turbulence is repre-
sented by an ensemble of Alfvenic shock waves on a
homogeneous density background. Alternatively, the system

FIG. 4. Renormalization phase flow diagram for the representa-
tive value r3SB /Sv# 1

2 . The trajectories are defined by Eqs. !49"
and !50".

FIG. 5. Saturation levels for steady-state Burgerlence. From the
top down, the levels represent the fluid energy, the magnetic en-
ergy, viscous damping, and diffusive damping as functions of !nor-
malized" time. !a" Levels for Sv#SB . !b" Levels for Sv#2SB .
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may describe particle gas dynamics, with arbitrary density
variations reacting to an adiabatic pressure.
Several dynamical regimes of the system were analyzed.

In the limit of unity Prandtl number (%#&), the system
decouples into two Burgers’ equations in the characteristic
variables v!B . Indeed, since the Hopf-Cole transformation
effectively ‘‘matches’’ diffusion with ballistic propagation,
an exact solution is possible only for the case of equal dif-
fusivities. In the more general case of arbitrary transport co-
efficients, we applied direct-interaction and renormalization
group methods to calculate the turbulent viscosity and diffu-
sivity !i.e, the dynamical decorrelation times" of the ran-
domly forced system. Galilean invariance, obvious in the
gas-dynamic interpretation but greatly underappreciated in
MHD, simplified the calculations tremendously by preclud-
ing vertex !coupling coefficient" renormalizations. It was
found that the equidissipation state is the only hydrodynamic
(k ,8→0) fixed point. Energy equipartition, however, de-
pended on the equality of the forcing functions.
From the viewpoint of self-organization phenomena !e.g.,

magnetic dynamos, shear-induced mean flow, etc.", this po-
tential disparity in energy levels is rather fortunate. Indeed, it
seems unlikely that the energy buildup of one field at the
expense of another could happen under the constraint of en-
ergy equipartition. A more reasonable scenario is field am-
plification by equidissipative turbulence, followed by the
nonlinear saturation of growth. The system may then relax
toward energy equipartition over time.
While this scenario appears to resolve an intrinsic paradox

in the Kraichnan-Iroshnikov theory, it relies on a different
spectral foundation. In the spirit of Kolmogorov, the KI
theory assumes a cascading inertial range free from the
large-scale forcing which triggered it. Moreover, the pres-
ence of a magnetic field can cause large-scale inhibition of
small-scale motion. In contrast, our model assumes a spa-
tially extended noise, with the forcing at small scales creat-
ing large-distance effects !e.g., the spreading of wave fronts
to prevent shock formation". However, the spatial depen-
dence of the forcing acts an extra parameter, allowing the

‘‘bubbling’’ dynamics of our model to effectively mimic an
intertial range.
This correspondence suggests that equidissipation is more

fundamental to the turbulent state than energy equipartition.
While the equality of transport coefficients is certainly robust
with regard to random forcing, it would be interesting to see
if this equal transport extended beyond the inertial range. In
particular, will the system dynamically self-adjust to main-
tain %%% t#&%& t, regardless of the initial conditions? This
would place a fundamental constraint on the onset of inter-
mittency as well. A related concern is the general probability
distribution for v and B. The equidissipation state, inter-
preted as an ensemble of ballistic structures, gives an asym-
metric PDF for the characteristic variables v!B . The distri-
bution before this asymptotic state, and its decoupling into
the individual fields, remains an open problem.

APPENDIX A: VERTEX RENORMALIZATION

In order to see how the nonlinear interactions behave un-
der a scale transformation, the perturbation series must be
expanded to third-order in the coupling coefficients !vertices"
7v and 7B . Equation !27" becomes

!"i8%%k2"vk ,8
!3 " #"ik#7v!2'v !0 "v !2 "(k ,8%'v !1 "v !1 "(k ,8"

%7B!2'B !0 "B !2 "(k ,8%'B !1 "B !1 "(k ,8"$

!A1"

where the convolutions

'XY (k ,8# =
k!,8!

Xk/2"k!,8/2"8!Yk/2%k!,8/2%8! !A2"

are symmetrized for convenience. The factors of 2 arise from
the equivalence of v (0)v (2) and v (2)v (0) !and similarly for B"
upon integration. Substituting for lower-order terms, such as

FIG. 6. Representative energy spectra. !a" En-
ergies for Sv)SB)k0. The solid line indicates a
slope of "1. !b" Energies for Sv)SB)k"1. The
solid line has a slope of " 5

3. Both of these slopes
agree with analytical predictions !see text".
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vk/2%k!,8/2%8!
!1 " ) =

k",8"
#7vvk/2%k",8/2%8"

!0 " vk!"k",8!"8"
!0 "

%7BBk/2%k",8/2%8"
!0 " Bk!"k",8!"8"

!0 " $ !A3"

gives a Fourier coupling in 9k ,k":, whose effective strength
is given by

7v
t # =

k!,8!
k!27v

2!;v!k!,8!"*vk!,8!
!0 " *2

%" 7B

7v
# 3;B!k!,8!"*Bk!,8!

!0 " *2$ , !A4"

7B
t # =

k!,8!
k!27B#Av!k!,8!"*vk!,8!

!0 " *2%AB!k!,8!"*Bk!,8!
!0 " *2$ ,

!A5"

where

;9v ,B:!k!,8!"#*G0
9v ,B:!k!,gq!"*2"2#G0

9v ,B:!k!,8!"$2,
!A6"

A9v ,B:!k!,8!"#7v*G0
9B ,v:!k!,8!"*2

"7BG0
v!k!,8!"G0

B!k!,8!".

As before, the bare propagators G0
v and G0

B are the linear
diffusive Green’s functions. Using the continuum approxi-
mation >k!,8!→2dk!d8!/(2-)2 and performing the inte-
grations !with infrared cutoff kmin) gives

7v
t #0, !A7"

7B
t #

7B

6-kmin
3 !D%%"

" 7v

%
"

7B

D # " SBD"
Sv

% # . !A8"

Equation !28" gives an alternative definition for 7B
t . Ex-

panding to third order, we have

!"i8%Dk2"Bk ,8
!3 " #"ik7B#'v !0 "B !2 "(k ,8%'v !1 "B !1 "(k ,8

%'v !2 "B !0 "(k ,8$ , !A9"

where the convolutions '¯(k ,8 are given by Eq. !A2". This
equation gives an effective coupling coefficient

7B
t #" =

k!,8!
k!27B#M !k!,8!"*vk!,8!

!0 " *2%N!k!,8!"*Bk!,8
!0 " *2$ ,

!A10"

where

M !k!,8!"#7B#G0
B!k!,8!"$2%7vG0

v!k!,8!"G0
B!k!,8!"

"7vG0
v!"k!,"8!"G0

B!k!,8!",
!A11"

N!k!,8!"#7v#G0
v!k!,8!"$2%7vG0

v!k!,8!"G0
B!k!,8!"

"7BG0
v!"k!,"8!"G0

B!k!,8!".

Finally, using the continuum approximation to convert the
sum and performing the integrations gives

7B
t #

7B!7B"7v"

6-!D%%"2kmin
3 " SBD"

Sv

% # . !A12"

Setting 7v#7B #as done for solutions !22"$, this equation
determines that 7B

t #0. Since Eq. !A8" must give the same
value for 7B

t , we have %#D . This is the lower-order result
given by straight perturbation theory. Self-consistently iter-
ating this equality in Eq. !A8" would have automatically
given 7B

t #0 as well.

APPENDIX B: SPATIALLY DEPENDENT NOISE

To extend the previous results, suppose that the forcing
functions are spatially-dependent, so that Sv#S(kV) and SB
#SB(k). Under a change of scale, k→e"1lk , the noise
strengths will rescale as S(k)→S(k)"(1l)k+kS . This extra
scaling modifies the turbulent transport coefficients and cre-
ates nonzero corrections to the forcing !i.e., wave function
renormalization". Galilean invariance still ensures that the
coupling coefficients remain unchanged.
To examine these changes, we extend the analysis done in

Sec. III C 3. In symmetrized form, Eqs. !32" and !33" become

!"i8%%k2"vk ,8
!2 "

#"ik =
k!,8!

#7vvk/2"k!,8/2"8!
!0 " vk/2%k!,8/2%8!

!1 "

%7BBk/2"k!,8/2"8!
!0 " Bk/2%k!,8/2,8!

!1 " $ , !B1"

!"i8%Dk2"Bk ,8
!2 "

#"ik7B =
k!,8!

#vk/2"k!,8/2"8!
!0 " Bk/2%k!,8/2%8!

!1 "

%Bk/2"k!,8/2"8!
!0 " vk/2%k!,8/2%8!

!1 " $ , !B2"

where G0
v(k ,8)#("i8%%k2)"1 and G0

B(k ,8)#("i8
%Dk2)"1 are the bare propagators.
These equations may also be used to define effective

propagators. As before, we can absorb the effects of the new
propagators into effective transport coefficients. Consider
Eq. !B1" first. For long times (8→0), we have

%k2#
7v
2

!2-"2 % dk!d8!! k" k!%
k
2 #

"i8!%%" k!%
k
2 # 2$

&! Sv" k!"
k
2 #

8!2%%2" k!"
k
2 # 4$% & v→B

%→D' . !B3"

Performing the frequency integral gives
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%k2#"
7v
2

8-%2 % dk!! k" k!%
k
2 # Sv" k!"

k
2 #

" k!"
k
2 # 2" k!2% k2

4 # $% & v→B
%→D' .

!B4"

The new propagator contains higher-order terms than the
original k2 of the bare one. Since the hydrodynamic behavior
is dominated by the small-k limit, Eq. !B4" may be expanded
in powers of k. To lowest order, then, we have

%k2#"
7v
2

8-%2 % dk!!3Sv!k!""k!
+Sv!k!"

+k! $ " 1k!4#
% & v→B

%→D' . !B5"

To implement the renormalization group, we integrate
over the range kmine"1l4kmin(1"1l)@k!@kmin , where 1l is
an infinitesimal change in length. To first order in 1l , the
turbulent viscosity becomes

% t#
1l

8-kmin
3 !7v

2Sv!kmin"
%2

#3"gv!kmin"$

%
7B
2SB!kmin"
D2 #3"gB!kmin"$$ , !B6"

where gi(kmin)##k/Si(k)$#+Si(k)/+k$*kmin .
Equation !B2" is evaluated in exactly the same manner,

giving an effective diffusivity

Dt#
1l7B

2

2-!%%D "kmin
3 & Sv!kmin"

%2 ! " 32%
%"D
%%D"

gv!kmin"
2 # $

%
SB!kmin"

D ! " 32"
%"D
%%D"

gB!kmin"
2 # $ ' . !B7"

Since the noise is now spatially dependent, it is no longer
invariant to a change in scale. The corrections appear explic-
itly in the autocorrelation functions. For example, first-order
velocity perturbations give

'vk ,8
!1 "*vk ,8

!1 " (# =
k!,8!

!k%k!"2*G0
v!k ,8"*2

&#7v
2*vk!,8!

!0 " *2*vk"k!,8"8!
!0 " *2

%7B
2 *Bk!,8!

!0 " *2*Bk"k!,8"8!
!0 " *2$ . !B8"

For long times (8→0), this reduces to

'vk ,8
!1 "*vk ,8

!1 " (#" 12- # 2% dk!d8!! !k%k!"2

8!2%%2k!4$
&!7v

2Sv!k!"Sv!k"k!"
8!2%%2!k"k!"2 $% & v→B

%→D' .
!B9"

Performing these integrals, with kmin(1"1l)@k!@kmin , we
have

Sv
t !k "#" 1l

4-kmin
3 # !7v

2Sv
2!kmin"
%3

%
7B
2SB

2 !kmin"
D3 $ . !B10"

Similarly, the noise correction to SB(k) is obtained from the
magnetic autocorrelation 'Bk ,8

(1)*Bk ,8
(1) (. Using the same pro-

cedure, the renormalized noise is

SB
t !k "#" 1l

-kmin
3 # !7B

2Sv!kmin"SB!kmin"
%D!%%D " $ . !B11"

Using the scalings from Sec. III, we can now write the
differential recursion relations of the renormalization group:

d%

dl #%!a"2%" 7v
2Sv!kmin"
8-%3kmin

3 # #3"gv!kmin"$%" 7B
2SB!kmin"
8-%D2kmin

3 #
&#3"gB!kmin"$$ , !B12"

dD
dl #D& a"2%

7B
2

2-D!%%D "kmin
3

&!Sv!kmin"
% " 32%

%"D
%%D"

gv!kmin"
2 #

%
SB!kmin"

D " 32"
%"D
%%D"

gB!kmin"
2 # $ ' , !B13"

d7v

dl #7v#a%c"1$#0, !B14"

d7B

dl #7B#a%c"1$#0, !B15"

dSv!k "
dl #Sv!k "#a"2c"1"gv!k "$

%
1

4-kmin
3 !7v

2Sv
2!kmin"
%3

%
7B
2SB

2 !kmin"
D3 $ ,

!B16"

dSB!k "
dl #SB!k "#a"2c"1"gB!k "$

%
1

-kmin
3 !7B

2Sv!kmin"SB!kmin"
%D!%%D " $ , !B17"

Note that for any spatially dependent noise, a cutoff-
dependent white noise component is generated. This white-
noise correction does not appear for uncolored forcing,
where scale invariance results in an exact exponent identity.
Rather, the extra component is a result of coupled interac-
tions, suggesting that the system responds to spatially corre-
lated forcing by trying to ‘‘balance out’’ the discrepancy in
scales.
The vertex corrections vanish due to Galilean invariance

!see Appendix A", giving the exponent identity c#1"a . As
before, there is only one independent exponent to find. Set-
ting d%/dl#dD/dl#0 to obtain the fixed points, Eqs. !B12"
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and !B13" give two equations for the exponent a. Consis-
tency then demands that %#D . Once again, the dissipation
rates are equal, even in the case of colored noise.
The exponent a is now expressed in terms of the noise

strengths. Plugging this form into Eqs. !B16" and !B17"
gives

dSv!k "
dl #3" 1"

7v
2Sv!kmin"
8-kmin

3 %3
#3"gv!kmin"$

"
7B
2SB!kmin"
8-kmin

3 D2%
#3"gB!kmin"$ # Sv!k ""gv!k "Sv!k "

%
1

4-kmin
3 !7v

2Sv
2!kmin"
%3

%
7B
2SB

2 !kmin"
D3 $ , !B18"

dSB!k "
dl #3" 1"

7v
2Sv!kmin"
8-kmin

3 %3
#3"gv!kmin"$

"
7B
2SB!kmin"
8-kmin

3 D2%
#3"gB!kmin"$ # SB!k "

"gB!k "SB!k "%
1

-kmin
3 !7B

2Sv!kmin"SB!kmin"
%D!%%D " $ .

!B19"

If the original noise spectrum had a power-law decay as k
→0, then this behavior would be preserved under rescaling.
Moreover, a white-noise component would be generated. As-
suming, then, that S(k))k"2A, the noise spectrum would
evolve to S(k)→S0%SAk"2A. For convenience, we consider
only the case where the forcing functions have the same k
dependence. The recursion relations become

dS0
v

dl #3S0
v!1"

1
8-%kmin

3 !7v
2F#Sv$%7B

2F#SB$ "$
%

1
4-kmin

3 !7v
2" #S0

v%SA
vk"2A$2

%3 #
%7B

2 " #S0
B%SA

Bk"2A$2

D3 # $ , !B20"

dS0
B

dl #3S0
B!1"

1
8-%kmin

3 !7v
2F#Sv$%7B

2F#SB$ "$
%

7B
2

-kmin
3 " #S0

v%SA
vkmin

"2A$#S0
B%SA

Bkmin
"2A$

%D!%%D " # ,
!B21"

dSA
v

dl #SA
v ! !3%2A""

3
8-%kmin

3 !7v
2F#Sv$%7B

2F#SB$ "$ ,
!B22"

dSA
B

dl #SA
B! !3%2A""

3
8-%kmin

3 !7v
2F#Sv$%7B

2F#SB$ "$ ,
!B23"

where

F#Sv$#
3S0

v%!3%2A"SA
vkmin

"2A

%2

and

F#SB$#
3S0

B%!3%2A"SA
Bkmin

"2A

D2 .

For small values of A, the long-range part of the noise is
irrelevant. The !cutoff-dependent" white-noise part domi-
nates, and the above recursion relations reduce to

dS0
dl #3S0"

9S0
2

8-kmin
3 %3

%
S0
2

4-kmin
3 %3

, !B24"

where S0#S0
v%S0

B . Here we have let %#D for simplicity.
The fixed point now gives the effective transport coefficients

% t#DT#!7!S0v%S0
B"

24- $ 1/3kmin"1 . !B25"

Using this result, we obtain the scaling exponents a# 5
7 and

c# 2
7 .
From the scaling arguments, the noise transforms as S

→ba"2c"1%2AS . Hence the long-range part of S(k) takes
over if

A$Ac#c%
1"a
2 #

3
7 , !B26"

leading to new exponents. In this case, the recursion relations
become

dSA

dl #!3%2A"SA" 1"
3SA

8-kmin
3 %3# , !B27"

where SA#SA
v %SA

B . The turbulent diffusivities are now
given by

% t#Dt#!3!SA
v %SA

B"kmin
"2A

8- $ 1/3kmin"1 . !B28"

For long-range order, then, the scaling exponents are a#1
"2A/3 and c#2A/3. Higher-order nonlinearities become
important !i.e., our system needs more general equations" for
ACAmax#

3
2.

With these effective transport coefficients, the energy
spectra now become

Ev!k "#! -

3!SA
v %SA

B"$ 1/3SA
vk"1"4A/3, !B29"

EB!k "#! -

3!SA
v %SA

B"$ 1/3SA
Bk"1"4A/3. !B30"

Even for colored noise, energy equipartition does not occur
unless the forcing functions are equal.
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